Fracture mode transitions in brittle coatings on compliant substrates as a function of thickness

نویسندگان

  • Herzl Chai
  • Brian R. Lawn
چکیده

The fundamentally changing nature of fracture in brittle coatings on compliant substrates with diminishing coating thickness is examined. Attention is focused on cracking induced by concentrated loading with a spherical indenter at the top surface. It is shown that the fracture mode undergoes transitions, from top-surface ring cracking around the contact (“thick-coating” region) to bottom-surface radial cracking at the lower ceramic surface (“intermediate” region) and, finally, back to surface ring cracking (“thin-coating” region). These transitions reflect a progressively changing stress field in the layer structures and highlight the differences in failure mechanism that may be anticipated at the largeand small-scale levels. Simple fracture relations are derived for each mode, expressing critical loads in terms of coating thickness relative to contact or sphere radius, coating strength and coating/substrate modulus mismatch. Data from finite element simulations and contact experiments on model ceramic/polymer bilayer systems are used to validate the basic elements of the analytical relations and to quantify deviations. Implications of the transitional behavior in relation to the strength of brittle coating/film systems are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contact-induced Damage in Ceramic Coatings on Compliant Substrates: Fracture Mechanics and Design

Simple explicit relations are presented for the onset of competing fracture modes in ceramic coatings on compliant substrates from Hertzian-like contacts. Special attention is given to a deleterious mode of radial cracking that initiates at the lower coating surface beneath the contact, in addition to traditional cone cracking and quasiplasticity in the nearcontact area. The critical load relat...

متن کامل

Polymer nanocomposite thin film mirror for the infrared region.

Thin film metal oxide coatings have been used commercially as electromagnetic filters from the UV to infrared regions for over half a century. Deposition onto a substrate has typically been accomplished using vapor deposition techniques and more recently sol–gel methods. These coatings provide very good optical and mechanical performance when applied to substrates with similar thermal and mecha...

متن کامل

Constraint Effects on Thin Film Channel Cracking Behavior

One of the most common forms of cohesive failure observed in brittle thin films subjected to a tensile residual stress is channel cracking, a fracture mode in which through-film cracks propagate in the film. The crack growth rate depends on intrinsic film properties, residual stress, the presence of reactive species in the environment, and the precise film stack. In this paper, we investigate t...

متن کامل

Mode II Edge Delamination of Compressed Thin Films

Ceramic coatings deposited on metal substrates generally develop significant compressive stresses when cooled from the temperature at which they are processed as a result of thermal expansion mismatch. One of the main failure modes for these coatings is edge delamination. For an ideally brittle interface, the edge delamination of a compressed thin film involves mode II interface cracking. The c...

متن کامل

A Study of Mechanics in Brittle–Ductile Cutting Mode Transition

This paper presents an investigation of the mechanism of the brittle–ductile cutting mode transition from the perspective of the mechanics. A mechanistic model is proposed to analyze the relationship between undeformed chip thickness, deformation, and stress levels in the elastic stage of the periodic chip formation process, regarding whether brittle or ductile mode deformation is to follow the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004